Step-By-Step Interconnection Introduction

AWEA Wind & Transmission Workshop
Omaha, NE
February 9, 2011

Abigail Krich
President, Boreas Renewables

Step-By-Step-Interconnection Introduction Outline

- FERC Order 2003 lays out standard procedure
- Step-By-Step Pro-Forma LGIP
- Interconnection backlogs form across nation
- FERC technical conference on queuing practice leads to individualized queue reform
- Metrics report on current status

FERC Order 2003

- Put in place a standard large generator interconnection procedure (LGIP)
- Also put in place a standard large generator interconnection agreement

Step-By-Step LGIP

- Interconnection Request
- Entry into Interconnection Queue
- Scoping Meeting
- Studies done serially in queue order
 - Feasibility Study
 - System Impact Study
 - Facility Study

Step-By-Step LGIP

- Determination of required upgrades and cost responsibility
- Interconnection Agreement
- Construction

Interconnection Backlogs Form

- Surge in interconnection requests causes backlogs across the country
 - Particularly from wind, significant portion of requests
 - Wind turbine model availability
 - Control interactions
 - Upgrades required to connect remote wind
 - Most pronounced in organized markets
 - ISO's and RTO's

Wind Power in Queues As of March 2010 (MW)

FERC Technical Conference 2007 Interconnection Queuing Practices

- Required all RTO's and ISO's to file status reports on efforts to improve queue processing
- Allowed RTO's and ISO's to propose tailored solutions rather than imposing a single, standard queue reform

Metrics Report

- First annual ISO/RTO metrics report submitted to FERC December 2010
- Includes metrics related to interconnection
- Gov't Accountability Office has suggested similar metrics be developed/reported for non-RTO's/ISO's

Metrics Report Queue Reform

- CAISO, MISO, NYISO, PJM moved from a serial process to a cluster or group study process
- MISO, SPP, (NYISO) moved from a first-comefirst-served process to a first-ready-first-served process
- ISO-NE has increased deposit levels throughout interconnection process

Metrics Report Number of Study Requests

 Study requests increased rapidly through 2008 then sharply declined

Metrics Report Interconnection Processing Times

Average processing time about 500 days

Range from about 100-800 days

Metrics Report Average Study Duration

 Average time to complete a single study just under a year (blend of Feasibility, System Impact, and Facility Study durations)

Metrics Report Feasibility Study Costs

Ranges from about \$2,500 to \$72,000

^{*} MISO gave average for all study types without differentiating between Feasibility, System Impact, and Facility Studies

Metrics Report System Impact Study Costs

Ranges from about \$10,000 to \$99,000

^{*} MISO gave average for all study types without differentiating between Feasibility, System Impact, and Facility Studies

Metrics Report Facility Study Costs

Ranges from about \$5,000 to \$125,000

^{*} MISO gave average for all study types without differentiating between Feasibility, System Impact, and Facility Studies

^{**} ISO-NE costs were based on a single study each year

Differing Incentives to Enter Queue All Dealing With Same Process

- Project viability known: wants to move fast
- Project viability unknown, wants to reduce uncertainty surrounding interconnection or lock in early queue position: wants to get feasibility study answers then move slow
- Project not viable due to transmission constraints, wants to be counted for long term planning or public policy discussions: wants to be in queue while moving as slow as possible

Ways To Save Money and Time In Interconnection Process

- Make project design decisions before starting interconnection process
 - project size
 - project one-line
 - plan for access to point of interconnection in unconstrained part of system
 - turbine selected with all required data from manufacturer
- Provide study data and execute agreements quickly
- Communicate desire to move quickly
- Skip optional study phases where applicable (Feasibility Study, Facility Study)

References

- 2010 ISO/RTO Metrics Report, December 6, 2010. FERC Docket AD10-5-000
- Interconnection Queuing Practices Technical Conference held December 11, 2007. FERC Docket AD08-2-000
- Standardization of Generator Interconnection Agreements and Procedures, Order 2003, issued July 24, 2003. FERC Docket RM02-1
- FERC Docket Search: http://elibrary.ferc.gov/idmws/ docket_search.asp

